US 2005/0012723 Al

materials and electronics have solved in other contexts. (As
one example, a version of Apple Computer’s iPod music
player uses touch-sensitive buttons instead of electric
switches with moving parts—in addition to use a touch-
sensitive “dial” control.)

[0214] The device and its software are configured to keep
track of the state (e.g. “being touched” or “not being
touched”) of every one of the sub-sensors on all the device’s
sensors. (This can be done in a wide variety of ways. For
example, the device could poll all the sub-sensors every
50th of a second or so to check each sub-sensor’s status and
update a data array used to track that status. Or the device
could be implemented with interrupt mechanisms so that any
change in a sub-component results in some software getting
executed that updates the memory recording the status of the
sub-sensors.)

[0215] Given this configuration, the device gains the abil-
ity to determine all of the points along the edge of a given
sensor that are being touched (and all the points that are not
being touched) at any given moment—to a spatial accuracy
and resolution determined by the number and size of the
sub-sensor strips and to a time accuracy and resolution
determined by the frequency at which the device’s electron-
ics and software query or update all of the sub-sensors for
their status (which can be quite frequent given the fast
processors used in today’s mobile electronic devices).

[0216] And given this data of which points (i.e., sub-
sensors) along the edge are being touched or not at any given
moment, most engineers skilled in the art of device control
can come up with algorithms for interpreting the changing
status of this data to detect (relatively quick) taps and swipes
on some parts of the overall sensor while ignoring other
parts of the sensors that appear to be in (relatively long
duration) contact with the user’s hand (or with other
objects). For example, in most contexts, a device designer or
sensor engineer could presume that points (i.e., individual
sub-sensors) along a touch-sensitive edge that have been in
continual contact with something (e.g. the hand of someone
holding the device) for relatively long periods of time (e.g.
more than 0.5 seconds) can be ignored for the purpose of
detecting an upcoming tap or swipe on the device, since taps
and swipes involve fairly quick transitions of the status of a
sub-sensor from “not being touched” to “being touched”
(often changing back to “not being touched” again fairly
quickly). If the device temporarily ignores any sub-sensors
that have been in a “being touched” state for more than 0.5
seconds (or some appropriate length of time), then the
device can watch for tapping by watching for other subs-
sensors (perhaps several sub-sensors clustered in a patch
about as wide as a finger pad) that suddenly transition from
“not being touched” to “being touched” and then transition
back to “not being touched” within a short period of time. As
described a few pages back, taps, double-taps, triple-taps,
and more can be detected using heuristics like this. (Engi-
neers skilled in the art of control input software engineering
would typically implement the tap-sensing heuristics to
accommodate slight shifts in patches of adjacent sub-sensors
that get touched in a multiple tap detection algorithm.)

[0217] 1t is also fairly straightforward for an engineer to
develop software (or firmware) that detects when the user is
swiping a finger across this new type of sensor, software that
distinguishes the swipe from a tap event, and software that

Jan. 20, 2005

determines the start and end positions of the swipe on the
sensor as well as the speed of the swipe. For example, if a
set of adjacent sub-sensors on the sensor (making up the
patch of sub-sensors that is roughly the width of the pad of
a person’s finger) suddenly transitions from “not being
touched” to “being touched”, then a brief time later all of
those sub-sensors suddenly transition back to “not being
touched” and none of the adjacent sub-sensors change state,
then the user probably tapped on that patch of sub-sensor.
But if sub-sensors next to the patch suddenly register as
“being touched” just when sub-sensors at the other end of
the patch of sub-sensors transition back to “not being
touched”, and if a little later, sub-sensors a next to those
newly touched sensors transition to “being touched” just
when sub-sensors back a ways transition back to “not being
touched”, then the user is probably swiping a finger along
that sensor. (This is analogous to a piano player dragging a
hand up the keyboard of a piano: First one patch set of keys
gets depressed, and as the user drags their hand up the piano,
the next keys up the piano get depressed as previously
depressed keys get released. The reader can look at FIG. 3-B
and FIG. 3-A and picture the sub-sensors as piano keys
while picturing the full sensor 301 as a piano. The sub-
sensors don’t move, but they do sense when they are
touched.). The direction of the swipe quickly becomes clear
from which sub-sensors are getting “pressed” as neighboring
sub-sensors get “released”. The distance between any two
sub-sensors on a given sensor is fixed—determined by the
sensor designer. So the speed of a swipe over a given period
can be defined as the distance from the middle of the patch
of sub-sensors that transitioned to “being touched” at the
beginning of that period (or from one end of that patch if the
designers prefers) to the middle of the patch of sub-sensors
that transitioned to “being touched” at the end of that period
(or to the other end of that second patch if the designer
prefers), divided by the time elapsed during that period.
(Speed equals distance divided by time.)

[0218] Given that capabilities of the new type of sensor
defined here, it is fairly straight forward for engineers skilled
in the art of control software and electronics (particularly
when that experience is related to touch-sensitive compo-
nents) to craft algorithms for detecting taps, swipes, and
other touch-related interactions with the sensors. And device
makers can then use this capability to allow users to control
the devices in fun and useful new ways.

[0219] Note that these new types of sensors can also be
used to detect when a user taps or touches or swipes two or
more fingers at two or more spots on a given sensor at the
same time (since the sub-sensors detect contact indepen-
dently). A device designer could use this feature to allow a
user to control the device in interesting new ways. For
example, one could picture a device maker letting a user
play music on a device by “playing chords” on a sensor on
the device—simulating playing chords on a piano. Or one
could picture enabling new typing mechanisms in which a
user presses multiple spots along the surface or edge of a
device simultaneously to type words or letters. Creative
device designers can think of many other possible uses for
this capability.

[0220] A generally representative list of some of the
preferred embodiments of devices that make use of this new
class of sensors follows.



